Housing Market Responses to Transaction Taxes: Evidence From Notches and Stimulus in the UK

Michael Best & Henrik Kleven

London School of Economics

May 2014
Transaction Taxes

- Asset transaction taxes are widely debated, but understudied
 - Poterba 2002; Matheson 2011; European Commission 2013
 - Recent debate motivated by the crisis in financial and housing markets

- Different kinds of asset transaction taxes
 - Securities transaction tax, currency transaction tax, bank transaction tax, house transaction tax

- Housing transaction taxes are by far the most widespread
 - 38 US states, 27 OECD countries, many developing countries
Housing Transaction Taxes

- It has been argued that housing transaction taxes are less distortionary than financial transaction taxes
 - House transactions are less frequent
 - House transactions are less international
 - Enforcement is relatively good
 - May explain the popularity of housing transaction taxes

- Housing transaction taxes often create quasi-experimental variation useful for evaluating its distortionary effects
 - Separates them from financial transaction taxes

- The UK version of this tax: **Stamp Duty Land Tax (SDLT)**
Advantages of our Setting

- **Large administrative dataset:**
 - Universe of stamp duty tax returns in the UK from 2004-2012 (about 10 million property transactions)

- **Quasi-experimental variation:**
 - Tax schedule produces large **price notches** (discrete jumps in tax liability at cutoff prices)
 - Anticipated tax changes create **time notches** (discrete jumps in tax liability at cutoff dates)
 - **Permanent reforms** and **stimulus** (tax holiday) affect houses in specific price ranges
Two Broad Findings

1. Transaction taxes are extremely distortionary
 - Distorts the price, volume, and timing of house transactions
 - Laffer rate of 4–7% (Pareto bound)
 - Marginal cost of funds is orders of magnitude larger than for conventional taxes

2. Temporary transaction tax cuts are enormously effective as fiscal stimulus
 - Large boost during stimulus, smaller slump after stimulus
 - Substantial GDP effects (1 dollar per dollar of tax cut) due to complementarities between moving house and spending
 - Relevant for transaction subsidies (e.g. US homebuyer tax credit)
1. **Transaction taxes**
 - Property transaction taxes
 - Capital gains taxes (stock, housing)
 Feldstein et al. 1980; Auerbach 1988; Burman & Randolph 1994; Cunningham & Engelhardt 2008; Shan 2011

2. **Fiscal stimulus**
 - Stimulus effects of tax rebates
 Shapiro & Slemrod 2003; Johnson et al. 2006; Agarwal et al. 2007
 - Stimulus and reversal effects of car transaction subsidies
 Mian & Sufi 2012
Outline

Introduction

Stamp Duty Land Tax

Data

Results

 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
UK Stamp Duty: Notches

- Tax on the total sale price of property; remitted by the buyer

<table>
<thead>
<tr>
<th>Price</th>
<th>Tax Liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>£125K</td>
<td>0%</td>
</tr>
<tr>
<td>£250K</td>
<td>1%</td>
</tr>
<tr>
<td>£500K</td>
<td>3%</td>
</tr>
<tr>
<td>£1,000K</td>
<td>4%</td>
</tr>
<tr>
<td>£2,000K</td>
<td>5%</td>
</tr>
</tbody>
</table>

\[
\Delta T = \£1,250
\]

\[
\Delta T = \£5,000
\]

\[
\Delta T = \£10,000
\]

\[
\Delta T = \£40,000
\]
UK Stamp Duty: Reforms & Stimulus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - £60K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>£60K - £120K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>£120K - £125K</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>£125K - £175K</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>£175K - £250K</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£250K - £500K</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£500K - £1000K</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£1000K - £2000K</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£2000K - ∞</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UK Stamp Duty: Reforms & Stimulus

Stimulus: Stamp Duty Holiday 3 Sep 2008 - 31 Dec 2009

- First notch moved temporarily from £125K to £175K, eliminating taxes in a 50K range
- Beginning of holiday was unanticipated
- End of holiday was anticipated (time notch at New Year 2010)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - £60K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>£60K - £120K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>£120K - £125K</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>£125K - £175K</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>£175K - £250K</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>£250K - £500K</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>£500K - £1000K</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>£1000K - £2000K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£2000K - ∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UK Stamp Duty: Compliance

- HMRC estimates put the stamp duty tax gap between 4-5% (lower than for most other taxes in the UK)

- Evasion through side payments associated with substantial risk
 - Collusion between multiple players difficult to sustain (Kleven, Kreiner, and Saez 2009)
 - Lag between agreeing and completing a house contract further complicates evasion

- Tax base includes “everything” except freestanding “extras” → potential evasion by overvaluing such items
Outline

Introduction

Stamp Duty Land Tax

Data

Results
 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
Data

- First-time access to administrative stamp duty records from Her Majesty’s Revenue and Customs (HMRC)

- Universe of stamp duty land tax returns (≈ all transactions) in the UK from 2004-2012

- About 10 million transactions

- Rich tax return information; little information outside the return
Data Spanning the Collapse of the Housing Market

![Graph showing the normalised number of transactions from 2005 to 2013, with data for London and UK. The graph indicates a significant decline in transactions starting in 2007, particularly in London.](image-url)
Prices Have Recovered in London, But Not the UK Overall

![Graph showing the average price (2005m4 = 1) for London and the UK from 2005m1 to 2013m1. The graph demonstrates that prices have recovered in London but not overall in the UK.]
Outline

Introduction

Stamp Duty Land Tax

Data

Results

Static Notches: House Price Responses
Moving Notches: Dynamics of House Price Responses
Stimulus: Timing and Extensive Responses
Stimulus: Household Spending & GDP Effects
Long Run Revenue and Welfare Effects

Conclusions
House Price Responses to Notches

Conceptual Framework

- Notches create **bunching** and **holes** in the house price distribution

- House price = price per unit \times units of quality-adjusted housing

- What drives observed house price bunching?
 - House quality
 - Price bargaining (but not standard price incidence)
 - Timing of transaction (thresholds are nominal)
 - Evasion

- House price elasticity is similar to taxable income elasticity
 - sufficient statistic for revenue; not necessarily for deadweight loss
House Price Responses to £250K Notch, 2004-2012

Method

Conceptual

Mansions

Introduction Stamp Duty Land Tax Data Results Conclusions
House Price Responses to £250K Notch, 2004-2012

Method
Conceptual
Mansions

Introduction Stamp Duty Land Tax Data Results Conclusions
House Price Responses to £250K Notch, 2004-2012

\[b = 1.85 \quad (0.340) \]
\[m = 2.21 \quad (0.365) \]
\[m - b = 0.36 \quad (0.694) \]

\[h_v = £10,000 \quad (1,997.0) \]

\[\text{Tax} = £5,000 \]
House Price Responses to £125K Notch, 2006-2008

\[b = 0.86 \ (0.144) \]
\[m = 0.96 \ (0.186) \]
\[m-b = 0.10 \ (0.320) \]
\[h_v = £5,000 \ (534.0) \]
\[Tax = £1,250 \]
House Price Responses

Summary

- **Bunching and holes:**
 - Large and sharp bunching just below notches
 - Large holes above notches
 - Holes are larger than bunching, consistent with the presence of extensive responses

- **House price responses:**
 - Average house price response $= 2-5 \times$ tax jump
 - Largest house price response (end of hole) $\geq 5 \times$ tax jump
 - Liquidity constraints are likely to play an important role
Outline

Introduction

Stamp Duty Land Tax

Data

Results

Static Notches: House Price Responses

Moving Notches: Dynamics of House Price Responses

Stimulus: Timing and Extensive Responses

Stimulus: Household Spending & GDP Effects

Long Run Revenue and Welfare Effects

Conclusions
Dynamics of House Price Responses

Notch moving from £120,000 to £125,000

4/2005
Dynamics of House Price Responses
Notch moving from £125,000 to £175,000 and back again

12/2007

b(125) = 0.68 (0.088)
b(175) = 0.10 (0.056)
Dynamics of House Price Responses

Monthly Bunching Estimates Over Time

Introductions Stamp Duty Land Tax Data Results Conclusions

Introduction Stamp Duty Land Tax Data Results Conclusions

0 0.25 0.5 0.75 1 1.25

Bunching Estimates

2007m1 2008m1 2008m9 2010m1 2011m1

Month

b(125) b(175)
Dynamics of House Price Responses

Summary

- **Build-up of bunching** when notches are introduced
 - Holiday start (unanticipated): bunching at £175K builds up in 3 months
 - Holiday end (anticipated): bunching at £125K builds up in 1-2 months

- **Disappearance of bunching** when notches are removed
 - Holiday start (unanticipated): bunching at £125K disappears in 4 months
 - Holiday end (anticipated): bunching at £175K disappears immediately

- **Little indication of optimization frictions**
 - With anticipation, almost zero inertia
 - Without anticipation, small inertia \approx contract completion lag
Outline

Introduction

Stamp Duty Land Tax

Data

Results

 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
Stimulus: Timing and Extensive Responses

Conceptual Framework

- The stamp duty holiday was an unanticipated stimulus program with a pre-announced end date.

- Such stimulus has two conceptual effects on house purchases:
 - **Timing response:** intertemporal substitution by those who would have purchased a house anyway.
 - **Extensive response:** house purchases that would not have taken place otherwise.

- Key questions:
 - What is the total stimulus effect?
 - How much of it is driven by timing?
 - How quick is reversal?
Stimulus: Timing and Extensive Responses
Empirical Approach

- Difference-in-differences approach

- Naive baseline:
 - Compare treated range 125K-175K to nearby control range
 - Treatment is endogenous to price responses to notches

- Dealing with endogeneity:
 - Widen treated range to include responding ranges on each side (intent-to-treat)
 - Adjust for price responses to notches using bunching estimates
Stimulus: Timing and Extensive Responses

Raw Time Series

-1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5

Normalised Log Number of Transactions

Month

2007m1 2008m1 2008m9 2010m1 2011m1 2012m1

£125K - £175K

Short Term Timing

Introduction Stamp Duty Land Tax Data Results Conclusions
Stimulus: Timing and Extensive Responses

Naive Diff-in-Diff

Short Term Timing

- Introduction
- Stamp Duty Land Tax
- Data
- Results
- Conclusions

<table>
<thead>
<tr>
<th>Month</th>
<th>£125K - £175K</th>
<th>£175K - £225K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008m9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012m1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stimulus: Timing and Extensive Responses

Diff-in-Diff Adjusting for Bunching Responses

Normalised Log Number of Transactions

Month

£125K - £175K
£175K - £225K

Short Term Timing

Introduction Stamp Duty Land Tax Data Results Conclusions

27 / 35
Stimulus: Timing and Extensive Responses

Diff-in-Diff Adjusting for Bunching Responses

\[b_H = 0.20 \]
\[b_R = -0.08 \]
\[b_P = -0.00 \]

(0.022) (0.032) (0.010)

Short Term Timing

2007m1 2008m1 2008m9 2010m1 2011m1 2012m1

Month

£125K - £175K
£175K - £225K
Stimulus: Timing and Extensive Responses

Diff-in-Diff Adjusting for Bunching Responses (Cumulative Effect)
Stimulus: Timing and Extensive Responses

Reversal / Total Stimulus Effect (Sensitivity to Reversal End Date)

\[-\frac{12_R}{16_H} = 0.31 (0.124)\]
Stimulus: Timing and Extensive Responses

Summary

▶ Housing stimulus increases activity during the 16 months of the program (timing + extensive margin) [20% per month]

▶ But reduces activity for about 12 months after the program (timing) [8% per month]

▶ Reversal is less than 50% of stimulus effect
 ▶ Differ from Mian and Sufi (2012) on US car market stimulus

▶ Why stimulate house purchases during crisis?
 ▶ Homeowner mobility too low during crisis
 ▶ Moving house triggers spending on repairs, renovations, durable goods and commissions → increase in GDP
 ▶ Other housing market spillovers (including house prices)
Outline

Introduction

Stamp Duty Land Tax

Data

Results

 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
Immediate Effect of Stimulus on Real Economy

- Lower-bound: stimulus effect only through moving-related spending (not including multiplier effects)

- Using consumption data, we estimate that a house purchase triggers spending of 5% of the house value

- Effect on GDP per dollar of tax cut $\frac{\Delta GDP}{\Delta Tax} \approx 1$

- Work on fiscal stimulus through income tax rebates find smaller effects ($\frac{\Delta GDP}{\Delta Tax} \approx 0.2 - 0.7$)

 - Success of stamp duty holiday relies on (i) strong responsiveness of house purchases to this tax, (ii) strong complementarities between moving house and spending
Outline

Introduction

Stamp Duty Land Tax

Data

Results
 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
Marginal cost of public funds

\[MCF = - \frac{dW}{dT} = \frac{1}{1 - \frac{t}{1+t} (\bar{\epsilon} + \bar{\eta})} \]

Laffer rate (Pareto Bound)

\[t_L = \frac{1}{\bar{\epsilon} + \bar{\eta} - 1} \]

\(\bar{\epsilon} \equiv \) intensive margin elasticity wrt \(1 + t \)
- \(\bar{\epsilon} \) from house price notches (upper bound)

\(\bar{\eta} \equiv \) extensive margin elasticity wrt \(1 + t \)
- \(\bar{\eta} = 14.3 \) from stamp duty holiday (permanent effect)
- \(\bar{\eta} = 23.2 \) from earlier permanent reform
Long Run Revenue and Welfare Effects

Results

<table>
<thead>
<tr>
<th>Bracket (£000s)</th>
<th>Rate (%)</th>
<th>\bar{e}</th>
<th>Marginal Cost of Funds</th>
<th>Laffer Rate t_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 – 250</td>
<td>1</td>
<td>0.16</td>
<td>1.17</td>
<td>0.16</td>
</tr>
<tr>
<td>250 – 500</td>
<td>3</td>
<td>0.08</td>
<td>1.72</td>
<td>7.43</td>
</tr>
<tr>
<td>500 – 1,000</td>
<td>4</td>
<td>0.04</td>
<td>2.23</td>
<td>4.47</td>
</tr>
<tr>
<td>1,000 – 2,000</td>
<td>5</td>
<td>0.09</td>
<td>3.18</td>
<td>L</td>
</tr>
<tr>
<td>2,000 –</td>
<td>7</td>
<td>0.13</td>
<td>17.86</td>
<td>L</td>
</tr>
</tbody>
</table>

- UK income tax: MCF = 1.2 overall; 1.1–2.7 across distribution
- US income tax: MCF = 1.1 overall
Outline

Introduction

Stamp Duty Land Tax

Data

Results
 Static Notches: House Price Responses
 Moving Notches: Dynamics of House Price Responses
 Stimulus: Timing and Extensive Responses
 Stimulus: Household Spending & GDP Effects
 Long Run Revenue and Welfare Effects

Conclusions
Conclusions

- First comprehensive study of the distortions created by property transaction taxes (which are ubiquitous)

- We have benefitted from
 - First-time access to complete UK transaction tax records
 - Compelling variation from notches, reforms, and stimulus

- We find that property transaction taxes are extremely distortionary
 - Bad long run policy
 - Transaction tax cuts / subsidies provide effective stimulus
 - Note: this is not about notches

- Remaining question: effects on asset-price bubbles and volatility
 - Difficult to identify; our study increases the burden of proof
Appendix

Appendix Slides
Effect of Notch on House Price Distribution

Intensive & Extensive Responses

Density

- - - Density under linear tax

Density under notched tax

Extensive Responses

Intensive Responses

House Price Responses

250K
Use a flexible polynomial to estimate $g_0(h_v)$, excluding data around the notch:

$$c_i = \sum_{j=0}^{q} \beta_j (z_i)^j + \sum_{r \in R} \eta_r I \left\{ \frac{\bar{h}_v + z_i}{r} \in \mathbb{N} \right\} + \sum_{k=\bar{h}_v^-}^{\bar{h}_v^+} \gamma_k I \{i = k\} + \mu_i$$

where c_i is count of transactions in price bin i, q is the order of the polynomial, z_i is the distance between bin i and the cutoff \bar{h}_v, \bar{h}_v^- is the lower bound of the excluded range, \bar{h}_v^+ is the upper bound of the excluded range, \mathbb{N} is the set of natural numbers, $R = \{500, 1000, 5000, 10000, 25000\}$ is a set of round numbers multiples, $I \{\cdot\}$ is the indicator function, and μ_i is the error term.
Appendix

Estimates of the Counterfactual Distribution, Bunching, and Holes

- Estimate of counterfactual distribution:

\[
\hat{c}_i = \sum_{j=0}^{q} \hat{\beta}_j (z_i)^j + \sum_{r \in R} \hat{\eta}_r I \left\{ \frac{\bar{h}_v + z_i}{r} \in \mathbb{N} \right\}
\]

- Estimates of excess bunching and hole (missing mass):

\[
\hat{B} (\bar{h}_v) = \sum_{i=\bar{h}_v^-} (c_i - \hat{c}_i) \quad \text{and} \quad \hat{M} (\bar{h}_v) = \sum_{i>\bar{h}_v} (\hat{c}_i - c_i)
\]

Results
House Price Responses to £500K Notch, 2004-2012

\[b = 1.64 \ (0.510) \]

\[m = 2.27 \ (0.387) \]

\[m - b = 0.63 \ (0.855) \]

\[h_v = £10,000 \ (3,808.7) \]

\[\text{Tax} = £5,000 \]
House Price Responses to £1,000K Notch, 2011-2012

- $b = 0.70$
- $h_v = £30,000$
- Tax = £10,000
- $e_v = 0.09$

Density of Property Transactions
- 600,000
- 800,000
- 1,000,000
- 1,200,000
- 1,400,000
- 1,600,000

House Price
- Actual Density
- Counterfactual Density

Diagram shows the density of property transactions against house price with actual and counterfactual densities compared.
House Price Responses to £2,000K Notch, 2012

\[b = 1.26 \]

\[h_v = £100,000 \]

\[\text{Tax} = £40,000 \]

\[v = 0.13 \]
Static Price Notches: Bunching and Holes
Notch at £60,000; 1 Nov 2004 - 16 Mar 2005

\[b = 0.41 \ (0.132) \]
\[m = 0.92 \ (0.318) \]
\[m-b = 0.51 \ (0.446) \]
\[h_v = £3,500 \ (1,026.1) \]
\[D_Tax = £600 \]
Static Price Notches: Bunching and Holes
Notch at £120,000; 17 Mar 2005 - 22 Mar 2006

[b = 0.70 (0.068)
m = 0.83 (0.226)
m-b = 0.13 (0.292)

\[h_v = £5,000 (282.2) \]

\[\text{Tax} = £1,200 \]
Static Price Notches: Bunching and Holes

Notch at £175,000; 3 Sep 2008 - 31 Dec 2009

\[b = 1.00 \ (0.270) \]

\[m = 0.50 \ (0.267) \]

\[m - b = -0.50 \ (0.520) \]

\[D_h v = £5,000 \ (1,981.8) \]

\[D_T ax = £1,750 \]

Graph:

- **Y-axis:** Number of Property Transactions
- **X-axis:** House Price
- **Legend:**
 - **Actual Distribution**
 - **Counterfactual Distribution**

Key Statistics:

- **Number of Property Transactions**
 - 125,000
 - 150,000
 - 175,000
 - 200,000
 - 225,000
 - 250,000

- **House Price Range:**
 - £125,000 to £250,000

- **Statistical Values:**
 - **b:** 1.00 (0.270)
 - **m:** 0.50 (0.267)
 - **m - b:** -0.50 (0.520)
 - **$D_h v$:** £5,000 (1,981.8)
 - **$D_T ax$:** £1,750

Notes:

- The graph illustrates the actual and counterfactual distribution of property transactions over the specified price range.
- The statistical values indicate the parameters that influence the distribution, such as the bunching and hole effects at £175,000.

Back
Static Price Notches: Bunching and Holes
Notch at £125,000; 1 Jan 2010 - 31 Oct 2012

\[b = 0.78 \quad (0.121) \]
\[m = 0.73 \quad (0.179) \]
\[m - b = -0.05 \quad (0.288) \]
\[h_v = £5,000 \quad (274.6) \]
\[\text{Tax} = £1,250 \]

Number of Property Transactions

House Price

Actual Distribution

Counterfactual Distribution

Back
Time Notch: Short-Term Timing Effects

Difference-in-Bunching with Price Range Counterfactuals

D-i-Bunching = 2.75 (.392)

Week

2010w13

2010w26

2010w1

2009w40

2009w26

£75,000 - £125,000

£175,000 - £225,000

£125,000 - £175,000

Number of Transactions

0

5000

10000

15000

20000

2009w26

2009w40

2010w1

Back to Stimulus
Time Notch: Short-Term Timing Effects
Difference-in-Bunching with Time Period Counterfactuals

D-i-Bunching = 3.44 (.381)

Back to Stimulus
Time Notch: Short-Term Timing Effects

Placebo Difference-in-Bunching 1: Price Range Counterfactuals 1 Year Earlier

D-i-Bunching = .09 (.42)

Week

2008w27 2008w40 2009w1 2009w13 2009w26

Price Range

£75,000 - £125,000
£125,000 - £175,000
£175,000 - £225,000
£225,000 - £275,000

Number of Transactions

0 5000 10000 15000 20000 25000 30000

Back to Stimulus
Time Notch: Short-Term Timing Effects
Placebo Difference-in-Bunching 2: Price Range Counterfactuals 2 Years Earlier

D-i-Bunching = -0.03 (0.241)

Number of Transactions

Week

2007w26 2007w40 2008w1 2008w14 2008w27

£75,000 - £125,000 £175,000 - £225,000 £125,000 - £175,000

Back to Stimulus
Permanent Reform: Extensive Responses

Diff-in-Diff Adjusting for Bunching Responses

$P = 0.23 \pm 0.018$

Month

- £60K - £120K
- £120K - £180K

Normalised Log Number of Transactions

2005m1 2005m4 2005m7 2005m10 2006m1
Permanent Reform: Extensive Responses

Diff-in-Diff Adjusting for Bunching Responses (Cumulative Effect)

Back to Conceptual Framework