Production vs Revenue Efficiency With Limited Tax Capacity
Theory and Evidence From Pakistan

Michael Best, Anne Brockmeyer, Henrik Kleven, Johannes Spinnewijn, Mazhar Waseem

London School of Economics

November 2013
Production Efficiency

- **Production Efficiency Theorem** (Diamond & Mirrlees 1971):
 Any second-best optimal tax system maintains production efficiency

- **Key policy implications:**
 - Permits taxes on consumption, wages and profits
 - Precludes taxes on inputs, turnover and trade

- The theorem has been influential in the policy advice given to developing countries
Production Efficiency vs Revenue Efficiency

- Production Efficiency Theorem **assumes perfect tax enforcement** → This is violated everywhere, but especially in developing countries

- **Tax evasion** introduces a trade-off between production and revenue efficiency in tax design

- In the context of firm taxation in Pakistan, our contribution is:
 - **Simple model** on the optimal production-revenue efficiency trade-off
 - Quasi-experimental evidence on the evasion elasticity w.r.t taxes
 - Link model & evidence to quantify optimal policy
Novel Quasi-Experimental Approach

- **Minimum Tax Scheme**: firms are taxed on either profits or turnover (lower tax rate on turnover) depending on which tax liability is larger
 - This production inefficient policy is motivated by tax compliance

- **Non-standard kink** where both the tax rate and the tax base jump
 - Kink changes real and evasion incentives differentially
 - Novel method for estimating tax evasion based on a bunching approach

- **Wide applicability** of our approach since such schemes are ubiquitous
Contributions to Previous Literature

- **Optimal taxation with enforcement problems**: Emran and Stiglitz (2005), Gordon & Li (2009), Kleven et al. (2009)

- **Estimating tax evasion**: Andreoni et al. (1998), Slemrod (2007), Kleven et al. (2011)

- **Corporate taxation**: Hassett & Hubbard (2002), Auerbach et al. (2010), Devereux et al. (2013)

- **Bunching methodology**: Saez (2010), Chetty et al. (2011)
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Firm Behavior: Real vs Evasion Responses

- Real output y, real cost $c(y)$, declared cost \hat{c}, penalty $g(\hat{c} - c(y))$

- Tax liability $T = \tau[y - \mu\hat{c}]$

- Maximization of after-tax profits

\[
 c'(y) = 1 - \omega \\
 g'(\hat{c} - c(y)) = \tau \mu
\]

- Production wedge $\omega = \tau \frac{1-\mu}{1-\tau \mu}$:
 - $\omega = 0$ for a profit tax $\mu = 1$ [production efficiency]
 - $\omega = \tau$ for a turnover tax $\mu = 0$ [production inefficiency]
Proposition [Production Inefficiency]

With **perfect enforcement**, the optimal tax base is pure profits \((\mu = 1) \)

With **imperfect enforcement**, the optimal tax base is in between pure profits and turnover \((0 < \mu < 1) \) and depends on the evasion-output elasticity ratio

\[
\frac{\tau}{1 - \tau} \times \frac{\partial \omega}{\partial \tau} (\mu) = G(\mu) \times \frac{\varepsilon \hat{c} - c}{\varepsilon_y}
\]

- \(\frac{\tau}{1 - \tau} \) \(\frac{\partial \omega}{\partial \tau} (\mu) \): effective MTR down in \(\mu \)
- \(G(\mu) \): tax gap up in \(\mu \)
- \(\frac{\varepsilon \hat{c} - c}{\varepsilon_y} \): elasticity ratio
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Minimum Tax Scheme

- Combination of profit tax ($\mu = 1$) and turnover tax ($\mu = 0$):

$$T = \max \{ \tau \pi (y - c); \tau_y y \}.$$

- Firms switch between the two taxes depending on profit rate p:

$$\tau \pi (y - c) = \tau_y y \iff p \equiv \frac{y - c}{y} = \frac{\tau_y}{\tau \pi}.$$

- Kink: tax base and marginal tax rate change discontinuously, but tax liability is continuous
Bunching at the Minimum Tax Kink

\[c'(y) = 1 \]
\[g'(\tilde{c} - c) = \tau_\pi \]

Density

Profit Rate \((y - \tilde{c})/y\)

smooth density under profit tax \(\tau_\pi\)
Bunching at the Minimum Tax Kink

\[c'(y) = 1 - \tau_y \]
\[g'(c-c) = 0 \]

\[c'(y) = 1 \]
\[g'(c-c) = \tau_\pi \]

\[y \downarrow, (\hat{c}-c) \downarrow \]

Density
Profit Rate \((y-\hat{c})/y \)

kink
smooth density under profit tax \(\tau_\pi \)
Bunching at the Minimum Tax Kink

\[c'(y) = 1 - \tau y \]
\[g'(\hat{c} - c) = 0 \]
\[c'(y) = 1 \]
\[g'(\hat{c} - c) = \tau \]

bunching at minimum tax kink

\[y \downarrow, (\hat{c} - c) \downarrow \]
\[\tau_y / \tau \]

Profit Rate \((y - \hat{c}) / y \)
Minimum Tax Kink Ideal for Eliciting Evasion

- **Real output response:**
 - Firms choose real output based on $1 - \omega$
 - At the kink, production wedge ω changes from 0 to $\tau_y \approx 0$
 \Rightarrow almost no variation and therefore small real response

- **Evasion response:**
 - Firms choose evasion based on $\tau \mu$
 - At the kink, $\tau \mu$ changes from $\tau \pi \gg 0$ to 0
 \Rightarrow large variation and therefore large evasion response

- **Bunching B identifies (mostly) evasion:**

\[
B \propto \frac{\tau_y^2}{\tau \pi} \varepsilon_y - \frac{\Delta (\hat{c} - c)}{y}
\]
Robustness

- **Distortionary profit tax**
 - If $\omega > 0$ under profit tax, then turnover tax may improve real incentives
 - \Rightarrow firms move away from the kink and **create a hole**

- **Distortionary turnover tax**
 - Small τ_y may create big distortions via cascading and extensive margin
 - \Rightarrow GE effects and extensive responses **do not affect bunching**

- **Output evasion**
 - If firms can underreport output, the turnover tax reduces output evasion
 (due to $\tau_y < \tau_\pi$) in addition to cost evasion
 - \Rightarrow bunching identifies **differential evasion from output and costs**
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Data

- Administrative data from FBR Pakistan
- All corporate tax returns from 2006-2010 (about 15,000 returns per year)
- New electronic data collection system in place for this time period
- In each year, about half of the firms are turnover taxpayers and half of them are profit tax payers
Variation in Minimum Tax Kink

- **Variation in profit tax rate** τ_π across firms:
 - High rate of 35%, low rate of 20%
 [depends on incorporation date, turnover, assets, #employees]

- **Variation in turnover tax rate** τ_y over time:
 - 2006-07: tax rate of 0.5%
 - 2008: turnover tax scheme withdrawn
 - 2009: tax rate of 0.5%
 - 2010: tax rate of 1%
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
- Bunching Evidence
- Estimating Evasion

Policy Implications
Bunching Evidence

High rate firms

2006/07/09

0.5% turnover tax 35% profit tax

High rate kink

Binsize 0.214.
Bunching Evidence

High vs low rate firms

2006/07/09

0.5% turnover tax
35% profit tax
20% profit tax

Binsize 0.214.

Density

Reported Profit as Percentage of Turnover

High rate kink

Low rate kink

High rate firms
Low rate firms

Binsize 0.214.
Variation across time: 2006/07/09 vs 2008

High rate firms

0.5% turnover tax 35% profit tax

2006/07/09 kink No kink in 2008

Density

-5 0 1.43 5 10

Reported Profit as Percentage of Turnover

Binsize 0.214.

Introduction Conceptual Framework Empirical Methodology Data Empirical Results Policy Implications
Bunching Evidence

Variation across time: 2006/07/09 vs 2010

High rate firms

0.5% turnover tax in 2006/07/09
1% turnover tax in 2010
35% profit tax

Binsize 0.204.

Heterogeneity

Introduction Conceptual Framework Empirical Methodology Data Empirical Results Policy Implications 24 / 39
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results

 Bunching Evidence
 Estimating Evasion

Policy Implications
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)

Reported Profit as Percentage of Turnover

Low rate firms: 0.02, 0.04, 0.06, 0.08

Density

Low rate firms: 1.42, 2.5, 5, 10

High rate firms: 2006/07/09

Counterfactual

Polynomial degree 5. Binsize .214

Counterfactual
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)
Without evasion: Output elasticity $[\varepsilon] = 133.3 \ (4)$
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)
Without evasion: Output elasticity \([e]\) = 133.3 (4)
With evasion: Evasion rate change = 66.7% (2.0) \([e=0]\)
\[66.2\% \text{ (2.0)} \quad [e=1]\]
\[64.2\% \text{ (2.0)} \quad [e=5]\]

Reported Profit as Percentage of Turnover

Low rate firms High rate firms Counterfactual
Polynomial degree 5. Binsize .214
Estimating Evasion

Low rate firms – 2006/07/09

Bunching = 2.0 (.2)
Without evasion: Output elasticity \([e] = 34.3 \ (3.3)\)
With evasion: Evasion rate change = 17.1% \((1.6)\) \([e=0]\)
16.6% \((1.6)\) \([e=1]\)
14.6% \((1.6)\) \([e=5]\)

Reported Profit as Percentage of Turnover

High rate firms
Low rate firms
Counterfactual

Polynomial degree 5. Binsize .214

Counterfactual
Outline

Introduction

Conceptual Framework

Empirical Methodology

Data

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Optimal Tax Base (Given τ and ε_y)

$$\frac{\tau}{1 - \tau} \times \frac{\partial \omega}{\partial \tau} (\mu) \simeq -\frac{\Delta (\hat{c} - c)}{\hat{\Pi}} (\mu) \times \frac{1}{\varepsilon_y}$$
Optimal Tax Base (Varying τ and ε_y)

$e_y = 0.2$
$e_y = 0.5$
$e_y = 1$
$t_y = 0.005$
$tp = 0.35$

Tax Base Parameter (m)
0.1, 0.2, 0.3, 0.4, 0.5

Tax Rate (t)
0.2, 0.4, 0.6, 0.8, 1

Introduction Conceptual Framework Empirical Methodology Data Empirical Results Policy Implications 32 / 39
Conclusion

- Production inefficient policies like turnover taxes may be optimal under imperfect enforcement.

- Novel quasi-experimental approach using minimum tax schemes for estimating evasion responses to switches between profit taxes and turnover taxes.

- Large evasion responses to such switches in Pakistan, which justify deviations from a production efficient profit tax.

- Returns to improved tax enforcement are high: up to 2/3 of profit tax revenues are lost due to underreporting by corporations.
Counterfactual Estimation

- Estimate counterfactual density following Chetty et al (2011):

\[d_j = \sum_{l=0}^{q} \beta_l (z_j)^l + \sum_{k=z_L}^{z_U} \gamma_k \cdot 1[z_j = k] + v_j. \]

- Estimate excess mass:

\[b = \frac{\sum_{k=z_L}^{z_U} \hat{\gamma}_k}{\sum_{k=z_L}^{z_U} \hat{d}_k / N_k} \]

- Excess mass indicates the profit rate change \(\Delta p \) for marginal buncher.
Theory predicts more evasion among firms that are

- small in number of employees (Kleven et al. 2009):
 - Collusive evasion is more sustainable in a small group
 - Proxy for firm size: salary payments, turnover

- less dependent on financial intermediation (Gordon & Li 2009)
 - Access to formal credit creates a paper trail
 - Proxy for credit needs: interest payments (scaled by turnover)

- selling to final consumers (e.g. Pomeranz 2013)
 - Paper trail is lacking for transactions with final consumers
 - Compare “retailers” and “non-retailers”
Bunching Heterogeneity

Heterogeneity – by salary over turnover

High rate firms, 2006/07/09

Reported Profit as Percentage of Turnover

Binsize 0.214.

Density

Below median Above median

Back
Bunching Heterogeneity

Heterogeneity – by turnover

High rate firms, 2006/07/09

Density

Reported Profit as Percentage of Turnover

Below median Above median

Binsize 0.214.

Back
Bunching Heterogeneity

Heterogeneity – by interest payments over turnover

High rate firms, 2006/07/09

Reported Profit as Percentage of Turnover

Binsize 0.214.

Below median
Above median

Back
Bunching Heterogeneity

Heterogeneity – by sector

High rate firms, 2006/07/09

Reported Profit as Percentage of Turnover

Retailers Non-retailers

Binsize 0.214.

Back